Alteration of protein-protein interactions of congenital cataract crystallin mutants.
نویسندگان
چکیده
PURPOSE A recent study demonstrated the presence of protein-protein interactions among lens crystallins in a mammalian cell two-hybrid system assay and speculated about the significance of these interactions for protein solubility and lens transparency. The current study extends those findings to the following crystallin genes involved in some congenital cataracts: CRYAA (R116C), CRYAB (R120G), and CRYGC (T5P). METHODS A mammalian two-hybrid system was used to assay the protein-protein interactions. Congenital cataract crystallin genes were cloned and fused into the two-hybrid system vectors (target and prey proteins). Together, with the third vector containing a reporter gene, chloramphenicol acetyltransferase (CAT), they were cotransfected into human HeLa cells. The presence of protein-protein interactions and the strength of these interactions were assayed by CAT ELISA. RESULTS The pattern of changes in protein-protein interactions of those congenital cataract gene products with the three major crystallins, alphaA- or alphaB-, betaB2-, and gammaC-crystallins, differed. For the T5P gammaC-crystallin, most of the interactions were decreased; for the R116C alphaA-crystallin, the interactions with betaB2- and gammaC-crystallin decreased and those with alphaB-crystallin and heat-shock protein (Hsp)27 increased; and for the R120G alphaB-crystallin, the interactions with alphaA- and alphaB-crystallin decreased, but those with betaB2- and gammaC-crystallin increased slightly. An attempt was made to interpret the results on the basis of conformational change and disruption of dimeric interaction involving beta-strands. CONCLUSIONS The results clearly indicate that crystallin mutations involved in congenital cataracts altered protein-protein interactions, which may contribute to decreased protein solubility and formation of cataract.
منابع مشابه
Protein-protein interactions between lens vimentin and αB-crystallin using FRET acceptor photobleaching
PURPOSE The R120G mutation of alphaB-crystallin is known to cause desmin-related myopathy, but the mechanisms underlying the formation of cataract are not clearly established. We hypothesize that alteration of protein-protein interaction between R120G alphaB-crystallin and lens intermediate filament proteins is one of the mechanisms of congenital cataract. METHODS Protein-protein interactions...
متن کاملDecreasing the homodimer interaction: a common mechanism shared by the ΔG91 mutation and deamidation in βA3-crystallin
PURPOSE Cataracts can be broadly divided into two types: congenital cataracts and age-related cataracts. DeltaG91 is a previously discovered congenital mutation in betaA3-crystallin that impairs protein solubility. On the other hand, the deamidation of beta-crystallin is a significant feature in aged and cataractous lenses. Several deamidation sites were also identified in betaA3-crystallin. Th...
متن کاملCongenital Cataract Causing Mutants of αA-Crystallin/sHSP Form Aggregates and Aggresomes Degraded through Ubiquitin-Proteasome Pathway
BACKGROUND Mutations of human αA-crystallin cause congenital cataract by protein aggregation. How mutations of αA-crystallin cause disease pathogenesis through protein aggregation is not well understood. To better understand the cellular events leading to protein aggregation, we transfected cataract causing mutants, R12C, R21L, R21W, R49C, R54C, R116C and R116H, of human αA-crystallin in HeLa c...
متن کاملMeasurement of volatile organic compounds in human blood.
Mutations of human αB-crystallin cause congenital cataract and cardio-myopathy by protein aggregation and cell death. How mutations of αB-crystallin become pathogenic is poorly understood. To better understand the cellular events related to protein aggregation and cell death, we transfected cataract and cardio-myopathy causing mutants, R11H, P20S, R56W, D109H, R120G, D140N, G154S, R157H and A17...
متن کاملDoes Long-Term Administration of a Beta-Blocker (Timolol) Induce Fibril-Based Cataract Formation In-vivo?
Timolol is a non-selective beta-adrenergic receptor antagonist administered for treating glaucoma, heart attacks and hypertension. In the present study, we set out to determine whether or not timolol can provoke cataract formation, thus the influence of timolol on the amyloid-type aggregation of crystallin was investigated. We then provided experimental evidence of crystallin aggregation and it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2003